Riemann Sum Notation

1. Explain why $\sum_{k=1}^{N} f\left(3+\frac{(k-1)}{N}\right) \cdot \frac{1}{N}$ is an under approximation of the area bounded by the graph of f and the x-axis when f is increasing on the interval $[3,4]$.
2. The function $y=g(t)$ represents the relationship between the rate of change in the value of investment stocks (in dollars per month) and the number of months t elapsed since the stocks were purchased. Which of the following sums approximates the change in the value of the stocks over the interval of time from 4 to 7 months after the stocks were purchased?
(a) $\sum_{k=4}^{7} g(k)$
(b) $\sum_{k=4}^{7} g(t) \cdot \Delta t$
(c) $\sum_{k=1}^{6} g(4+.5 k) \cdot .5$
(d) $\sum_{k=0}^{3} g(4+k) \cdot \Delta t$
(e) $\sum_{k=0}^{3} g(4+k)$
3. Let $f(x)$ represent the linear density (in g / m) of a 20 meter long wire, where x is the distance in meters from one end. The mass of the wire is approximated by the left endpoint approximation with N terms:

$$
\sum_{i=1}^{N} f((i-1) \Delta x) \cdot \Delta x
$$

Note that this Riemann sum is based on a uniform partition.
Explain what the following expressions represent in the context of the wire and provide its units of measurement.
(a) Δx
(b) $(i-1) \Delta x$
(c) $f((i-1) \Delta x)$
(d) $f((i-1) \Delta x) \cdot \Delta x$
(e) $\sum_{k=1}^{N} f((i-1) \Delta t) \cdot \Delta t$
4. Let $f(t)$ represent the horizontal velocity (in ft / s) of a golf ball t seconds after it was struck and lands b seconds later. The horizontal distance traveled by the golf ball is approximated by the right endpoint approximation with N terms:

$$
\sum_{i=1}^{N} f(i \Delta t) \cdot \Delta t
$$

Note that this Riemann sum is based on a uniform partition.
Explain what the following expressions represent in the context of the golf ball and provide its units of measurement.
(a) Δt
(b) $i \Delta t$
(c) $f(i \Delta t)$
(d) $f(i \Delta t) \cdot \Delta t$
(e) $\sum_{k=1}^{N} f(i \Delta t) \cdot \Delta t$
5. The function $g(t)$ gives the rate at which oil leaves a tanker, and is decreasing between 2 minutes and 10 minutes. Which of the following are underestimates of the amount of oil that left the tank between 2 and 10 minutes.
(a) $g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)+g(9)$
(b) $\sum_{k=3}^{10} g(k)$
(c) $\sum_{j=1}^{20} g\left(2+\frac{j-1}{2}\right) \cdot \frac{1}{2}$
(d) $\sum_{j=1}^{20} g\left(2+\frac{j}{2}\right) \cdot \frac{1}{2}$
(e) $2 \cdot(g(4)+g(6)+g(8)+g(10))$
(f) $2 \cdot(g(3)+g(5)+g(7)+g(9))$

